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ABSTRACT 1 

According to the National Highway Traffic Safety Administration (NHTSA), over 400,000 truck 2 

accidents occurred in 2009 with approximately 7,800 of those are fatal crashes. Compared to 3 
extensive studies conducted on freeway truck safety, the research on arterial streets is 4 

considerably disproportionate. Making the connections between truck traffic generators, arterial 5 
streets are key links in door-to-door deliveries. There is an urgent need to study truck safety on 6 

arterial streets because of the strong growth of truck traffic.  7 

 Truck related crashes are expected to be reduced through the careful planning of the 8 
location, design, and operation of driveways, median openings, street connections and street 9 

sections. By collecting extensive data on selected arterial corridors that are heavily used by 10 
trucks, truck crash frequency and severity contributing factors have been identified using 11 

negative binomial model and multinomial logit (MNL) model, respectively. Corridor truck miles 12 
traveled, AADT, signal density, shoulder width, PSI and its standard deviation are significant 13 

factors for the crash frequency prediction. MNL identified twelve causal factors for crash 14 
severity such as posted speed limit, lane width, number of lanes, pavement condition index, 15 

undivided roadway portion and so on. Subsequently, a crash severity index (CSI) for the truck 16 
arterial corridors was developed. The findings from the study will not only benefit state and local 17 

agencies in planning, design, and manage a safer truck arterial corridor, but also help carriers to 18 
optimize their routes from the safety perspective.19 
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INTRODUCTION 1 

Freight transportation is extremely critical to the economic development of a nation. The United 2 

States economy depends on trucks to deliver nearly 70 % of all freight transported annually, 3 
accounting for $671 billion worth of manufactured and retail goods in the U.S. along with $295 4 

billion in trade with Canada and $195.6 billion in trade with Mexico (1). Trucking revenues 5 
totaled $610 billion in 2011, and revenues are estimated to nearly double by 2015 (2). While the 6 

rapid commercial trucking growth is great news for the country’s economy, the increasing truck 7 
traffic may negatively impact cars, vans, SUVs and other vehicles that share the road. In 2010, 8 

large trucks accounted for 4 percent of all registered vehicles and 10 percent of the total vehicle 9 
miles traveled. Of the fatalities in crashes involving large trucks during 2010, 76 percent were 10 

occupants of other vehicles (3). In fact, one person is injured or killed in a truck accident every 11 
16 minutes and one out of every eight traffic fatalities involves a trucking collision (2). The 12 

National Highway Traffic Safety Administration (NHTSA) has estimated that over 400,000 truck 13 
accidents occurred in 2009 with approximately 7,800 of those are fatal crashes (4). Therefore, it 14 

is urgent to improve truck safety and reduce truck-related crashes. 15 

             Extensive research has been conducted on site-specific characteristics and their effects 16 
on truck crashes, either at intersections or on segments (5-12). Moreover, truck safety on 17 

freeways and interstate highways has usually been a focus of research because of the high speed 18 
and high truck percentage (8-17). Studies have shown that full access controlled roads have a 19 

safer traffic record, accounting for only 24 percent of crashes, while the remainder occurs on 20 
arterial or local roadways (7). In contrast, limited research has been conducted on arterial streets, 21 

especially from a corridor perspective. Arterial streets connect freeway corridors to the 22 
distributors, carriers, vendors, and customers.  They are the “last miles” for commercial motor 23 

vehicles to deliver the freight to destinations or enter the interstate highway system. Analyzing 24 
safety from an arterial corridor perspective is important as there are more opportunities for 25 

conflicts with passenger vehicles at signalized intersections and it is valuable for developing 26 
system-wide, corridor-based, and more importantly proactive safety improvement strategies. 27 

            While emphasizing highway safety, the safety risk index is an effective measure for 28 

proactively identifying and analyzing safety issues. More concisely, the safety risk index is a 29 
measure by which the transport personnel can quantify the hazards associated with particular 30 

roadway characteristics, environmental patterns, and driver population. A quantifiable risk index 31 
associated with a roadway segment will help transportation agencies to identify potential safety 32 

problems and adopt appropriate remedies prior to a crash occurrence thereby reducing the risk 33 
exposure to other road users. Previously, many agencies have taken a reactive approach to safety, 34 

only responding to requests for safety improvements or relying heavily on the historic crash 35 
statistics. Recently, more agencies have committed to utilizing a more proactive safety 36 

management approach that would identify high risk roadway features or high risk locations in the 37 
context of a roadway network and implement effective low-cost improvements whenever 38 

appropriate. The newly published Highway Safety Manual (HSM) by the American Associations 39 
of State Highway and Transportation Officials’ (AASHTO) has substantially accelerated the 40 

deployment of the proactive safety analysis approach.  The HSM recommends the use of the 41 
relative severity index (RSI), which is the predicted average crash costs for a site, as the 42 

performance measure for the network screen (18). Therefore, the objective of this research is to 43 
investigate the relationship between highway and traffic engineering characteristics and truck 44 
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crashes from a collection of arterial corridors with the purpose of developing a truck arterial 1 
corridor crash severity index (CSI) as a holistic measurement of truck crash risk.  2 

LITERATURE REVIEW 3 

There are many factors that may be involved in truck crashes. The Large Truck Crash Causation 4 
Study (LTCCS) identified human factors (an action or inaction by the drivers) and vehicle 5 

malfunctions (break problems) as the two leading causes. Roadway problems were present in 16 6 
percent of the two-vehicle cases based on the 967 crashes involving 1,127 large truck and 959 7 

non-truck motor vehicles (19). A prime interest to transportation agencies, the impacts of 8 
roadway geometric features on truck crashes has attracted considerable attention from many 9 

researchers. Extensive studies have focused on identifying roadway geometric features, traffic 10 
operational and pavement characteristics that contribute to truck crashes (5-14, 17). Looking 11 

beyond highway geometric data, Wang et al. developed multi-level estimation models by using 12 
freeway traffic data (flow, ramp volume, and shoulder width), economic activity data (shipment, 13 

county unemployment rate, income) and safety performance data to identify any contributing 14 
factors that may increase crash rates (8). They found that factors such as the number of 15 

shipments, county unemployment rate, truck and ramp AADT, and lane width significantly 16 
affect the number of truck crashes.  17 

 Many of the preceding studies were based on either individual intersections or segments, 18 

while few studies approached truck safety issues from a corridor perspective (20-23). Sayed and 19 
El-Basyouny assessed the corridor effects with alternate specifications (20). They compared the 20 

traditional Poisson Log Normal(PLN) model with two extended PLN models using a data set 21 
from 392 urban arterials in the city of Vancouver, BC, that were clustered into 58 corridors. The 22 

results of their paper provided some strong evidence of the benefit of clustering road segments 23 
into rather homogeneous groups (e.g., corridors) and incorporating random corridor parameters 24 

in accident prediction models. Research performed by Lee et al. examined factors that affected 25 
urban divided arterial road mid-block crashes on a 5.3-km section of urban arterial (21). The 26 

authors concluded that the number of access points on urban arterial roadways should be reduced 27 
to minimize the number of mid-block crashes. Abdel-Aty and Wang emphasized the fact that 28 

signalized intersections within a corridor have a correlated influence on the occurrence of 29 
crashes if the intersections are placed closely together (22).  To account for the correlated data 30 

problem they used generalized estimating equations (GEE) with a negative binomial link 31 
function. Milton et al. used corridor specific and weather related variables to predict injury 32 

severity proportions using a mixed logistic model (23). Within these results, the average daily 33 
traffic (ADT), snowfall, truck average daily traffic, truck percentage, and the number of 34 

interchanges per mile were found to be statistically significant random variables for predicting 35 
different levels of injury severity. Whereas, the pavement friction, horizontal curvature per mile, 36 

and number of grade breaks per mile has fixed effect across all injury levels. These studies 37 
demonstrate the importance of corridor effects or corridor-level variables on crash occurrence 38 

and injury severities.  39 

 The proved relationship between crash frequency, severity and any contributory factors 40 
can be applied in a proactive safety analysis. De Leur and Sayed worked on the development of a 41 

systematic framework for proactive road safety planning in which they assumed road risk was a 42 
function of exposure, collision probability of a vehicle and consequence of a potential collision 43 

(24). They also provided some planning recommendations regarding land use shape, road 44 
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network shape, geometric design elements, roadway functionality and friction, speed at crash 1 
prone areas, and road side environment in an effort to improve the safety of a roadway segment. 2 

In addition to the planning recommendation for safety improvements, the results of the statistical 3 
models of accident frequencies and injury severities can be used to present a road safety risk 4 

index. De Leur and Sayed developed two types of road safety risk index, RSRIspecific and 5 
RSRIcombined, based on the risk score of a particular road feature (25). RSRIspecific defines the risk 6 

associated with each road feature, obtained by combining the scores for the three components of 7 
risk, while RSRIcombined defines overall risk by combining the RSRIspecific scores for all road 8 

features. In a recent study, Wu and Zhang proposed a framework for developing a composite 9 
Road Risk Index using a logistic function based on exposure, crash rate and crash severity (26). 10 

They showed risk index as a function of a predicted number of different crash types multiplied 11 
by a relative level of cost due to a particular type of crash using the HSM crash severity 12 

distribution and associated crash unit costs. In the HSM network screening process, a site-13 
specific relative severity index (RSI) is calculated by multiplying the observed or predicted 14 

average crash frequency for each crash severity with their respective comprehensive crash cost 15 
and an average RSI is then obtained by dividing the overall RSI by the total number of observed 16 

crashes that occurred at the site (18). Regardless of the differences in the methods examined, 17 
they can provide valuable clues for informed decision-making. 18 

METHODOLOGY 19 

This section contains the theoretical concepts and mathematical equations necessary for the 20 
development of the truck arterial corridor CSI. Methodologies of predictive methods for crash 21 

frequency and crash severity distribution were discussed. 22 

Crash Severity Index (CSI) 23 

Truck corridor CSI was measured by the annual societal economic costs due to truck crashes 24 

which occurred along the specific corridor measured by unit length. Expected annual number of 25 
truck crashes as well as the proportion of crash by severity can be estimated via corridor 26 

geometric characteristics and traffic conditions. Combining annual crash frequency, severities, 27 
unit crash cost, and corridor length, the truck arterial corridor CSI is formulated in Equation 1. 28 

 29 

     
     

   
 
   

  
          (1) 30 

where: 31 
CSIi is the crash severity index for truck corridor i, 32 

Ni is the annual expected number of truck crashes occurred along corridor i, 33 
Pj is the proportion of crash severity j with j=1, J for corridor i, 34 

Uj is the unit crash cost for severity j and 35 
Li is the length of corridor i. 36 

 37 
For any truck corridor under consideration, the CSI value can be estimated using the 38 

corridor characteristics and applied either as the ranking tool for the truck safety performance or 39 
a proactive method for truck safety planning. 40 

 41 

 42 
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Modeling Methods for Crash Frequency 1 

Count-data modeling (Poisson, negative binomial) techniques are widely using for crash 2 

frequency as the number of accidents ni on roadway segment per unit of time is a non-negative 3 
integer. When the variance is larger than the mean, the data are said to be over dispersed. Over 4 

dispersed count data are usually modeled with a negative binomial distribution because the 5 
Poisson distribution has a restrictive assumption of equal variance and mean. In a Poisson model, 6 

the probability of the number of truck crashes for corridor i, ni is as follows: 7 

      
           

  

   
           (2) 8 

where P(ni) is the probability of a corridor i having ni crashes and λi is the expected number of 9 

crashes in corridor i. The negative binomial model is an extension of the Poisson where the 10 
Poisson parameter λ follows a gamma probability distribution. The standard log link function for 11 

the negative binomial model can be expressed as a linear model of the covariates in Equation 3. 12 

λi= exp(β0i + β1x1i + · · · + βkxki)exp(εi)                   (3) 13 

where βs are coefficients of explanatory variables  and exp(εi) is the term adjusting for over-14 

dispersion and is gamma distributed. The models were estimated by using generalized linear 15 
modeling.  For this modeling, the SAS GEMOD procedure was used (27).  16 

Modeling Methods for Crash Severity 17 

Ordered Probit (OP) Model 18 

The consequence of a crash can be modeled as a discrete outcome.  An extensive and detailed 19 
review of the discrete choice probabilistic models and their applications in predicting crash 20 

severities is discussed by Savolainen et al. (28). It has been accepted by many researchers that 21 
there is an  ordinal nature to crash severities, i.e. injury severity can be ranked from high to low 22 

as fatal injury (K), incapacitating injury (A), non-incapacitating injury (B), possible injury (C), 23 
and property-damage-only (O). To model injury severities as the ordinal response, researchers 24 

most frequently used discrete choice models such as ordered Probit (OP) models (28). An 25 
OP model is a special case of the Probit model where more than two outcomes of an ordinal 26 

dependent variable is modeled, usually estimated using maximum likelihood. The underlying 27 
relationship to be characterized is as Equation 4. 28 

                    (4) 29 

where y* is the exact but unobserved dependent variable; X is the vector of independent 30 
variables, and β is the vector of regression coefficients which needs to be estimated. The ε is a 31 

random error term and assumed to follow a standard normal distribution. Furthermore y* cannot 32 
be observed, instead the categories of response can only be observed, as expressed in Equation 5. 33 

   

            
                     

           
           (5) 34 

μ represents thresholds to be estimated along with the parameter vector β. 35 
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Multinomial Logistic (MNL) Model 1 

When modeling crash severities as an ordinal dependent variable, some restrictions can 2 

potentially affect the estimated results (28). The primary concern is the manner in which the 3 
explanatory variables affect the probabilities of the discrete outcome, i.e. the shift in the cutoff 4 

thresholds is constrained to move in the same direction. On the other hand, non-ordinal 5 
probabilistic models, such as multinomial logit (MNL) models, allow variables to have opposite 6 

effects regardless of the order of the injury severities. MNL model is a regression model which 7 
generalizes logistic regression by allowing more than two discrete outcomes. MNL relies on the 8 

assumption of independence of irrelevant alternatives (IIA), i.e. the odds of preferring one class 9 
over another do not depend on the presence or absence of other "irrelevant" alternatives. The 10 

mathematical model underlying MNL is to construct a linear predictor function that constructs 11 
the relationship between outcomes from a set of weights that are linearly combined with the 12 

explanatory variables of a given observation: 13 

      
                 (6) 14 

where Xi is the vector of explanatory variables describing observation i, βj is a vector of weights 15 
(or regression coefficients) corresponding to outcome j, and Uij is the utility associated with 16 

assigning observation i to get category j. The εij is an error term that accounts for the random 17 
noise and assumed to be independently and identically distributed with a Gumbel extreme value 18 

distribution, and its logistic formulation is given by: 19 

      
      

    

         
    

   
   

                           (7) 20 

In a multinomial logit model, for K possible outcomes, running (K-1) independent binary 21 
logistic regression models, in which one outcome is chosen as a "pivot" and then the other (K-1) 22 

outcomes are separately regressed against the pivot outcome. If the last outcome K is chosen as 23 
the pivot, the estimated coefficients are usually presented as a log odds ratio between the 24 

probability of a given category and the reference one, resulting in (K-1) estimates for each 25 
independent variable if the response variable has K levels, as specified in Equation 8. 26 

    
     

     
                                (8) 27 

Note that βj is a vector of estimable parameters representing the log odds ratio between the 28 
probabilities of two alternatives. 29 

In a similar attempt, Geedipally et al. applied MNL models for estimating the proportion 30 
of crashes by collision type and then multiplied by the total number of crashes estimated with a 31 

total crash model to obtain the crash counts for each crash type at a site (29). They concluded 32 
that it is a promising method based on comparisons with the fixed proportion method and the 33 
method of developing respective collision type models.  34 

 35 
  36 
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DATA COLLECTION AND PROCESSING 1 

The data used in this research consisted of five years (2005 to 2009) of crash counts, and 2 

geometric, pavement, and traffic volume data. Truck crashes were retrieved from the online 3 
Wisconsin crash database through the WisTransportal System (30). In order to undertake the 4 

investigation of truck crashes from a corridor perspective based on arterial roads, the truck 5 
corridor selection was confined to principal arterials and minor arterials. Recognizing the 6 

challenge of short (less than 1 mile) or very short segments (less than 0.1 mile) in the dataset, it 7 
was necessary to collapse short segments into longer ones so that it can be treated as a corridor. 8 

This was done by using collapsing criteria to dissolve adjacent roadway segments with similar or 9 
same annual average daily truck traffic (AATT). After a sensitivity analysis to specify a 10 

reasonable corridor length, it was determined to collapse adjacent segments having AATT 11 
differences within the range of 100 trucks per day. Next, three more criteria were applied to 12 

identify the beginning and end of the study corridors: 1) threshold of the corridor length is no 13 
less than one mile, 2) threshold value of truck annual average daily traffic 800 or more, and 3) 14 

study segment must be within five miles of an Interstate highway or a freeway. This resulted in 15 
100 corridors containing 720 smaller segments. The descriptive statistics for key variables used 16 

in the crash frequency and severity models can be seen in Table 1. 17 

During this five year period, 8,196 truck related crashes occurred in selected corridors, 18 
notably more than 50% of the crashes occurred in the South-East region and near the Milwaukee 19 

area where most truck activities occur. There was a decreasing trend of crashes over the five year 20 
period with 2009 showing the lowest number of crashes. Among these truck crashes 66% were 21 

property damage only (O); 21% were possible injuries (C); 9% were non-incapacitating injuries 22 
(B); 3% were incapacitating injuries (A); and 1% were fatal injuries (K). From the results of 23 

single and multiple vehicle crashes that were studied, 88% of the crashes were multi-vehicle 24 
crashes. 25 

Corridor-level variables were created for each of the 100 corridors. As shown in Table 1, 26 

the total annual crash frequency had a mean of 82 and a standard deviation of 71, with a 27 
maximum of 407 crashes. The percentage of observations with more than 50 crashes within a 28 

corridor was found to be over 50%. Corridor lengths vary from relatively short (1.03 mi) to very 29 
long (16.94 mi) with an average segment length of 4.88 mi. The mean corridor AADT was 30 

16,256 with a standard deviation of 6,107. Signal density and Access point density were 31 
calculated by the ratio of the number of signalized intersections and corridor lengths and the 32 

number of un-signalized intersections and corridor lengths. The maximum access point density 33 
of 30.47 exists in a 2.56 mile corridor where a total of 78 access points were counted, including 34 

60 residential and commercial driveways and 18 other types of access points. The maximum 35 
speed of 60 mph identifies the corridor that contains a portion of a principal arterial with the 36 

65mph posted speed limit. Similarly, the maximum lane width of 18 feet reflects a portion of a 37 
principal arterial corridor that has very wide lane width i.e. 22 feet. In addition, the proportion of 38 

corridor by the number of lanes, median presence, and speed limited were calculated. In 39 
particular, the corridor data was analyzed carefully for the good, fair, poor condition of roadways 40 

with less than or greater than 40mph horizontal curvature speed. 41 

 42 

  43 
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TABLE 1 Summary Statistics of Crash, Geometric and Traffic Variables for 100 Corridors 1 

Variable  Description Mean STDV Min Max 

Crash count 5 Year crash count for each corridor 82 71 14 407 

Crash Severity 
 O 54 49 9 276 

 C 17 16 0 84 

 B 8 7 0 41 

 A 3 3 0 11 

 K 1 2 0 6 

L Length of the corridor (miles) 4.88 3.42 1.03 16.94 

AADT Annual average daily traffic  16256 6107 8172 39435 

AATT Annual average daily truck traffic  1077 211 800 1892 

TRKPT Truck percentage (%) 7.1 1.4 4.8 10.2 
N_br Number of Bridges 1.01 1.38 0 8 

Sigden Signal density (signals/mile) 0.51 0.87 0 4.33 

Accden Access point density (access points/mile) 5.29 4.81 0 30.47 

SPD Posted speed limited in mph 45 9 30 60 

Lnwd Lane width in feet 12.3 0.8 10 18 
Mednwd Median width in feet 14 12.9 0 47.3 

Lshwd Left shoulder width in feet 3.8 3.4 0 10.9 
Rshwd Right shoulder width in feet 5.6 4.2 0 15 

Divund_U Portion of undivided segments within a corridor 0.48 0.4 0 1 

Divund_D Portion of divided segments within a corridor  0.52 0.4 0 1 

NL_1 Portion of segment with one lane 0.01 0.06 0 0.47 
NL_2 Portion of segment with two lane 0.81 0.3 0 1 

NL_3 Portion of segment with three lane 0.06 0.2 0 1 

NL_4 Portion of segment with four lane 0.12 0.25 0 1 

Hcl_g Portion of segment with Horizontal curve speed 

less than 40mph_Good 

0.95 0.19 0 1 

Hcl_f Portion of segment with Horizontal curve speed 

less than 40mph _Fair  

0.03 0.17 0 1 

Hcl_p Portion of segment with Horizontal curve speed 
less than 40mph _Poor 

0.01 0.07 0 0.43 

Hcg_g Portion of segment with Horizontal curve speed 

greater than 40mph_Good 

0.89 0.29 0 1 

Hcg_f Portion of segment with Horizontal curve speed 

greater than 40mph _Fair 

0.09 0.26 0 1 

Hcg_p Portion of segment with Horizontal curve speed 

greater than 40mph _Poor 

0.02 0.09 0 0.59 

PSI Pavement Serviceability Index(0-5) 3.05 0.92 0.88 4.75 

STD(PSI) Standard deviation of PSI 0.58 0.42 0 1.98 

IRI International Roughness Index in mm 0.08 0.08 0 0.427 

PCI Pavement Condition Index (0-100) 77.09 24.35 0 100 

  2 
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RESULTS ANALYSIS & DISCUSSION 1 

When traveling along an arterial corridor, truck drivers must adjust to design inconsistencies 2 

such as posted speed limits, signal timing, and geometric variations as well as heed the drivers of 3 
other motor vehicles to avoid any potential collisions. The expected number of truck crashes can 4 

be modeled as the product of traffic exposure and the truck crash rate, which may be a function 5 
of truck volume, AADT, and other factors. There is no fixed formula for measuring traffic 6 

exposure; different methods can be applicable depending on the way that segment length and 7 
traffic volume were specified (10, 31, 32). For example, Miaou (10) used AATT as an exposure 8 

variable and AADT as a surrogate variable to indicate traffic condition while modeling truck 9 
crashes. Whereas, Venkataraman (31) used AADT and the length of a segment as exposure 10 

variables in modeling Interstate crash occurrences. Using vehicle miles traveled (VMT), which is 11 
the product of segment length, AADT, and the number of days a year in the unit of million or 12 

100 million, as the traffic exposure measurement is also common. Therefore, a variety of model 13 
specifications have been tested before the selection was narrowed down to the three 14 

representative ones.  15 

As shown in Table 2, Model 1 uses million VMT as the traffic exposure and truck 16 
percentage (TRKPT) as one of the explanatory variables in the crash rate function. Model 2 used 17 

truck mile traveled (TMT) as the traffic exposure, assuming truck crashes are proportional to the 18 
truck volume and segment length. AADT is treated as one of the explanatory variables, 19 

representing the traffic density. Model 3 uses both AATT and AADT in the traffic exposure and 20 
segment length is treated as an offset. This model structure emphasizes the interaction between 21 

trucks and non-truck motor vehicles. Note that the statistically significant variables vary across 22 
three models due to different model specification. For brevity, they are represented as Xβ in the 23 

model. The final model was selected based on the model statistical goodness-of-fit and the 24 
number of meaningful and statistically significant variables. The Akaike information criterion 25 

(AIC) is a measure of the statistical goodness-of-fit. The general formula is AIC= 2k - 2ln(L) 26 
where k is the number of parameters in the statistical model and L is the maximized value of the 27 

likelihood function for the estimated model. The preferred model is the one with the minimum 28 
AIC value, which is Model 2. 29 

TABLE 2 NB Model Structures 30 

Model Equation AIC value 

Model 1 µ= (VMT)
 α
 EXP (β0+β1TRKPT+Xβ) 

where VMT is million VMT 

968 

Model 2 µ= (TMT)
α
 EXP (β0+β1AADT+Xβ) 

where TMT is million truck miles traveled  

966 

Model 3 µ=length*AATT
α1

AADT
α2

EXP (β0+ Xβ) 982 

 31 
Table 3 summarizes the parameter estimates, standard deviation, t-statistics and variables 32 

that are significant at 95% confidence limit. Along with the intercept, million truck miles 33 
traveled (TMT), AADT, signal density and standard deviation of Pavement Serviceability Index 34 

(PSI) are positively associated with the number of truck crashes. The closely spaced signalized 35 
intersections along corridors could influence each other in operation as well as in safety (22). 36 

The shoulder width and PSI are negatively associated with the number of truck crashes. Among 37 
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these crash contributing factors, the PSI value was calculated based on slope variance, rut depth, 1 
cracking and patching. A PSI value of 5 means the perfect riding condition of a road surface and 2 

vice versa. The model results imply that the corridor-based safety performance could be 3 
improved by better pavement conditions, wider shoulder widths, and more consistent signal 4 

timing designs (e.g. protected phases, longer clearance interval, etc.). 5 

TABLE 3 NB Estimates for Accident Frequency Prediction 6 

Effect    Estimate      Std. Err.      t- Statistics            p-value 

Constant       2.7523 0.255 11 0.0001 

TMT      0.8404 0.08 10.2 0.0001 

AADT in thousands        0.023 0.009 2.54 0.0366 

Shoulder width     -0.042 0.02 -2.24 0.0283 

Signal density        0.186 0.042 2.95 0.0036 

PSI                   -0.2115 0.061 -3.53 0.0009 

STD(PSI)          0.26 0.112 2.27 0.0278 

Dispersion 0.180 0.027 6.67 0.0001 

AIC = 966; Pearson Chi-Square / DF=1.07   

  Following the crash frequency prediction, the crash severity distribution was also 7 
estimated based on corridor-level variables. Both MNL and OP models were used for the 8 

prediction of probabilities for crash injury severity proportions for each corridor. The predicted 9 
probabilities were compared with the observed proportion using the sum of absolute difference 10 

(SAD) as follows: 11 

         
 
   

     
            (10) 12 

Where: 13 

     is the sum of absolute difference for all 100 corridors for injury severity type j; 14 

  
 
 is the predicted probability for injury severity type j on corridor i; and 15 

  
 
 is the observed probability for injury severity type j on corridor i; 16 

 17 

 Table 4 shows the sum of absolute difference of injury severity proportions of MNL and 18 
OP models. The MNL model was chosen to calculate the predicted number of crashes for the 19 

five levels within a corridor because the sum of the absolute difference in MNL was smaller than 20 
OPM for all levels.  21 

TABLE 4 Sum of Absolute Difference of Injury Severity Proportions 22 

Model O C B A K 

OP 6.29 6.02 3.81 2.16 1.50 

MNL 6.16 5.06 3.70 1.82 1.27 

 23 

In the MNL model results shown in Table 5, the posted speed limit, shoulder width, 24 
pavement serviceability index, standard deviation of PSI, pavement condition index, number of 25 

lanes, lane width, AATT, AADT and undivided portion of roadway segment were all determined 26 
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TABLE 5 Coefficient Estimates for MNL 1 

Variable C B A K 

 

Coef. 

(Std. Err.) 

Z 

(p-value) 

Coef. 

(Std. Err.) 

Z  

(p-value) 

Coef. 

(Std. Err.) 

Z 

(p-value) 

Coef. 

(Std. Err.) 

Z  

(p-value) 

Intercept - - -2.44 (1.08) -2.24 (.02) -7.13 (2.0) -3.40 (.001) -12.51 (4.0) -3.11 (.002) 

AADT - - -.043 (.024) -1.83 (.06) - - - - 

AATT - - .001 (.000) 1.99 (0.04) - - - - 

SPD - - - - .052 (.01) 3.22  (.001) .059 (.03) 1.85 (.06) 

Ln width -.096 (.04) -1.94 (.053) - - - - .393 (.22) 1.76 (.07) 

NL_1   1.38 (0.61) 2.25 (.02) - - - - 

NL_2 -.378 (.17) -2.21 (.02) - - - - - - 

NL_3 -.480 (.19) -2.41 (.01) - - - - - - 

Shoulder 

width 

- - - - .111 (.03) 2.87 (.004) - - 

Divund_U - - .348 (.18) 1.93 (.053) - - - - 

PCI -.003 (.001) -1.69 (.09) -.004 (.002) -2.06 (.03) - - - - 

PSI - - .173 (.08)  2.15 (0.03) - - - - 

STD(PSI)          - -   -.735 (.20) -3.61 (.000) -1.25 (.42) -2.89 (.003) 

Note: Number of observation = 1986, Prob>chi-square=0; LL= -7755.43  

“-” represents the variables that are not statistically significant at 10% level of significance.  
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to be statistically significant variables for predicting different levels of injury severity at the 10% 1 
significance level. In the MNL model, the coefficient estimates are explained as the comparison 2 

between injury level i with the base level O. For example, if a road is undivided, a driver’s 3 
chance of getting injured increases significantly, with respective probabilities of level B being 4 

1.42 (e
0.348

) times that of O. Similarly, a one lane corridor increases the probabilities of level B 5 
being 3.97 (e

1. 38
) times that of O and injury severity due to the effect of PSI for level B is 1.2 6 

(e.
173

) times that of the base level. 7 

In the final phase of the research, the predicted crash frequency and the predicted severity 8 

proportions for each corridor were employed to develop the truck corridor CSI using Equation 1. 9 
The total number of predicted crashes for a corridor was multiplied by the corresponding injury 10 

severity proportions in order to get the crash frequency for each severity type. Then those 11 
predicted injury severity frequencies were multiplied by the respective comprehensive crash cost 12 

provided in HSM for the estimation of total crash costs of each corridor (18). A worksheet was 13 
designed to facilitate the calculation as illustrated in Table 6.   14 

TABLE 6 CSI Estimation Worksheet 15 

Corridor Location Information 

Highway name: 

From / To: 

Nearby Interstate Highway: 

Region: 

Variables 

AADT  

AATT 

L 

Shoulder width 

Signal density 

Ln width 

NL_1 

NL_2 

NL_3 

Divund_U 

SPD 

PCI 

PSI 

STD(PSI) 

Calculation of expected number of crashes 

    
          

       
 

             
                                                                   

                                 

Calculation of predicted injury severity proportion  
(coefficients refer to Table 5) 

 

    
       

     
             

  =            

  =            

  = P          

  = P          

  = 
 

    
     

   

 

Unit crash cost 

($) (18) 

UPDO = 7,400 

UC = 44,900 

UB = 79,000 

UA = 216,000 

UK = 4,008,900 

Calculation of corridor crash severity index (CSI) 

 

    
      
 
   

 
 

 

Glossary: Refer to Table 1 
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The observed truck corridor CSIs were calculated and compared with the predicted ones. 1 
Figure 1 shows that both predicted CSI and observed CSI skewed to the left, suggesting the CSI 2 

is not symmetrically distributed. The average annual predicted CSI was found to be $ 239,830 3 
per mile with a standard deviation of $190, 269, which was higher than the actual average annual 4 

CSI of $202, 850 per mile with a standard deviation of $198, 751.  The overestimation was more 5 
apparent in the range of $200K~$300K than in other intervals. For those overestimated corridors, 6 

some common characteristics such as narrower shoulder width, higher standard deviation of 7 
AATT, lower pavement serviceability index, narrower lane width were observed, which seem to 8 

contribute considerably to the predicted crash frequency and severity. Nevertheless, the 9 
overestimated corridors are the ones with low CSI, suggesting very few serious injury crashes. 10 

 

 
 11 

FIGURE 1 Histogram of observed and predicted CSI per thousand.12 
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The developed CSI can play a vital role in quantifying the overall risk to the traveling 1 
public posed by each truck corridor. The CSI is designed to alert motor carriers and 2 

transportation agencies of potential safety issues so that preventive measures can be taken. The 3 
index could assist transportation agencies in allocating safety improvement funding and 4 

enhancing the identified geometric design components of arterials. By taking adequate measures 5 
based on the CSI, the road agencies can direct trucks to arterial roadways with adequate 6 

geometries and pavement conditions. The CSI can also be employed to a truck route network 7 
analysis so that highway safety can be incorporated into the route choice. The motor carriers can 8 

make informed decision based on not only logistics but also safety. 9 

CONCLUSIONS 10 

Due to rapid truck travel growth in the county, concern amongst transportation agencies about 11 

truck related safety issues have increased.  Although numerous studies have been conducted for 12 
truck safety on the Interstate highway system, the research on truck crashes on arterial streets, 13 

especially from the arterial corridor perspective, is relatively limited.  Arterial streets are the “last 14 
miles” for trucks to deliver the freight to destinations or enter the Interstate highway system. 15 

Improving truck safety from an arterial corridor standpoint is crucial for developing more 16 
proactive, corridor-based safety strategies.  In this study, rigorous effort has been made in the 17 

selection of the truck corridors based on corridor length, truck volume and their proximity to 18 
interstate highways. Based on the selected truck corridors, a quantifiable crash severity index 19 

(CSI) was developed to provide a holistic measurement of the truck crash risk. 20 

The truck corridor based CSI is defined as the annual societal economic costs due to 21 
truck crashes per unit length. It is a composite average of the truck crashes by severity with the 22 

weights determined by the crash unit cost. The truck crash count by severity for each corridor 23 
can be estimated by combining a crash severity model and a crash frequency model through a set 24 

of corridor-level variables. The negative binomial model was used to predict the total number of 25 
truck crashes, where million truck miles traveled, AADT, signal density, shoulder width, the 26 

pavement serviceability index and its standard deviation were identified as statistically 27 
significant variables. The MNL model was employed to estimate the injury severity proportion. 28 

The model results showed that some factors only affect truck crash frequency such as signal 29 
density and other factors only affect crash severities such as posted speed limit, lane width, 30 

number of lanes, pavement condition index and undivided roadway portion.  The common 31 
factors that affect both are AADT, AATT, shoulder width, PSI and its standard deviation. 32 

Therefore, when comparing different safety improvements strategies, any change to the value of 33 
the factors related to crash frequency, severity, and especially both should be comprehensively 34 

and carefully evaluated. 35 
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